

MINICURSO INTERNACIONAL

MINERAL-ORGANIC INTERACTIONS IN SOILS

PPG Solos e Nutrição de Plantas ESALQ-USP

Dias 5 e 6 de junho de 2017

Duração: 14h

Local: Departamento de Ciência do Solo ESALQ/USP, Anfiteatro de Agricultura e Solos.

Ministrante: Professor Markus Kleber (Crop and Soil Science Department, Oregon State University)

http://cropandsoil.oregonstate.edu/content/markus-kleber

Inscrições: enviar **até 31 de maio de 2017** e-mail com informações pessoais, profissionais e e-mail para o Coordenador do Minicurso, Pedro Martinez: <u>rodrigup@oregonstate.edu</u>

Público: estudantes de pós-graduação, professores, pesquisadores com interesse no estudo da matéria orgânica do solo.

Obs: Não há taxa de inscrição.

Summary:

Treats soil as the interface between organic and mineral components. Introduces molecular scale properties of major system components (mineral types and forms of soil organic matter). Shows how interactions between minerals and organics determine the special nature of the soil "bioreactor". Course is focused on biogeochemical processes that determine soil organic matter turnover.

Suggested pre-requisites: Courses in soil chemistry, mineralogy and organic matter

Syllabus:

	Торіс	Objectives	References		
June 5 st					
8:00 to 9:30	Water, hydration, hydrolysis, hydrogen bonding, water cage, entropy	Explain why water (the polar solvent "H ₂ O") is a critical component of the soil system. Show how it both participates in and determines the outcome of chemical and physical reactions within the system.	Essington ME (2003) Soil and water chemistry, pp 183-198. CRC Press, Boca Raton.		

0.00 / 10.00			
9:30 to 10:30	Energy and Redox	Show that energy moves from one	Schlesinger WH (1997)
		molecule/ element to another	Redox potential: the basics.
		through the corresponding	In "Biogeochemistry - an
		transfer of electrons, show	Analysis of Global Change,
		implications for both mineral and	pp. 226-242, Academic
10:30 to 10:50	Morning break	organic system compounds	Press, Amsterdam.
10:50 to 12:00		Establish the context for this	Waksman SA (1936)
10.30 to 12.00	Humus,	widely used terminology. Provide	Nature and Characteristics
	humification, humic	definitions and show conflicts	of Humus. In "Humus
	substances,	between contemporary	Origin, Chemical
	Molecularly	understanding and traditional use	Composition, and
	Uncharacterized	of terms.	Importance in Nature", pp.
	Compounds (MUC)		3-9, Williams and Wilkins,
			Baltimore, MD. Burdon, J.,
			2001 . Are the traditional
			concepts of the structures of
			humic
12:00 to 13:00	Lunch		
13:00 to 14:00	Adsorption/	Show how the attachment of a	Essington, M. E . (1994).
	Desorption	dissolved substance to a mineral	"Adsorption of Aniline and
	•	surface is handled. Explain	Toluidines on
		sorption isotherms, hystereses,	Montmorillonite." Soil
		background electrolyte	Science 158: 181-188.
14:00 to 15:00	Chemical reactivity	Establish understanding of the	Essington ME (2003) Soil
	of organic	reactions to be expected between	and water chemistry, pp
	functional groups	organic molecules among each	133-140. CRC Press, Boca
	8 I	other and with mineral surfaces	Raton.
		by showing what gives them the ability to interact.	
15:00 to 15:20	Afternoon break	ability to interact.	
15:20 to 17:00		Understand the energetic drivers	LaRowe, D. E.; Van
		behind decomposition.	Cappellen, P., Degradation
		Distinguish between the concepts	of natural organic matter: A
		of "free energy change" and	thermodynamic analysis.
		"activation energy". Understand	Geochimica et
		why the latter depends on	Cosmochimica Acta 2011,
		temperature, while the former	75, (8), 2030-2042.
	The energetics of	does not.	Davidson, E. A.; Janssens,
	decomposition		I. A., Temperature
	_		sensitivity of soil carbon
			decomposition and
			feedbacks to climate
			change. Nature 2006, 440,
			(7081), 165-173.
June 6 th			
June 6th 8:00 to 9:20	The chemistry of	Give overview of the "parent	Kogel-Knabner I (2002)
June 6th 8:00 to 9:20	The chemistry of	Give overview of the "parent materials" for soil organic matter	Kogel-Knabner I (2002) The macromolecular
	organic inputs to	Give overview of the "parent materials" for soil organic matter formation	The macromolecular
	-	materials" for soil organic matter	The macromolecular organic composition of
	organic inputs to	materials" for soil organic matter	The macromolecular organic composition of plant and microbial residues
	organic inputs to	materials" for soil organic matter	The macromolecular organic composition of

9:20 to 10:30	SOM stabilization	Use three milestone papers to show how the understanding of mineral influence on soil carbon paper has evolved over the last 20 years. Introduce the concepts of recalcitrance, accessibility and interactions.	Oades JM (1988) The retention of organic matter in soils. Biogeochemistry. 5, 35-70. Sollins P, Homann P, and Caldwell BA (1996) Stabilization and destabilization of soil organic matter: Mechanisms and controls. Geoderma, 74, 65-105. Lutzow Mv, et al. (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review. European Journal of Soil Science, 57, 426-445.
10:30 to 10:50 10:50 to 12:00	Morning break Methods of organic	Show, how upon suspension /	Swift R (1999)
	matter analysis	dissolution of organics in a polar solvent (water), the physical properties of organic moieties can lead to predictable arrangements. Introduce basic thermodynamic principles (2nd law)	Macromoleclar properties of soil humic substances: fact, fiction and opinion. Soil Science, 164, 790-802. Sutton R, and Sposito G (2005) Molecular structure in soil humic substances: The new view. Environ. Sci.Technol., 39, 9009- 9015.
12:00 to 13:00	Lunch		
13:00 to 14:00	Minerals as electron donors and electron acceptors	Show that minerals are more than passive adsorbents: they can replace food and air	Brock Biology of Microorganisms
14:00 to 15:00	Archetypes of mineral surfaces, solid solution interface	Show that mineral surfaces in the "clay"-fraction can be grouped into three major categories and how these categories relate to chemical and physical reactivity. Explain the particularities of mineral surfaces. Introduce Double Layer Concept, surface acidity, points of zero charge	Sposito G et al. (1999) Surface geochemistry of the clay minerals. Proceedings of the National Academy of Sciences USA, 96, 3358- 3364.
15:00 to 15:20 15:20 to 17:00	Afternoon break	Explain that ion exchange is an	Hiemstra, T., and W.H.
13.20 10 17:00	Ion exchange (organic and inorganic, cation and anion)	Explain that for exchange is an adsorption process that is distinguished from other adsorption processes in that it involves only ions held by weak electrostatic interactions. Show that all aqueous species, inorganic and organic, that exist as cations/anions in soil solutions may participate in ion exchange reactions.	VanRiemstra, 1., and W.H. VanRiemsdijk. 1996. A surface structural approach to ion adsorption: The charge distribution (CD) model. Journal of Colloid and Interface Science 179:488-508.